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ABSTRACT 

A simple but efficient computational procedure is given for calculating bound state 
solutions of wave equations, valid even for absorptive interactions and corresponding 
complex eigenvalues. The method also applies to eigenvalues in nonlinear form. The 
integration is deliberately made in the direction of instabilities, but this does not spoil 
the accuracy. 

During an investigation of the interaction of r-mesons with nuclei we have met 
the following problem: 

Negative r-mesons interact with the electrostatic potential Zol/r outside the 
nucleus, and because of this attractive potential they can form bound states 
(“mesic atoms”). Both the eigenvalues and wave functions for the unperturbed 
problem (Klein-Gordon equation with an external Coulomb field) are well known. 
In addition to this interaction the pion has short-range interactions in a region of 
nuclear dimensions. These interactions have a double origin: (I) the strong inter- 
action and the absorption of the pion by the nucleus, (2) the deviation of the 
Coulomb field from Za/r inside the nuclear region due to smeared out charges. 
The result of these interactions is to change the eigenvalue of the bound state and, 
due to the absorption, to transform the eigenvalue from a real one to a complex 
one (level broadening). Our problem is to calculate this complex eigenvalue to 
high precision under various hypotheses for the detailed interaction. 

To tackle this problem we have developed a simple, unusual, but general method 
which has not been previously used to our knowledge. The method can be applied 
generally to bound-state problems of the wave equation type (Schroedinger, 
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Klein-Gordon) whether the interaction is described by potentials, by boundary 
conditions or otherwise. 

We now describe the essence of the method in a simplified case. Consider an 
equation of the type 

$ + tk,2 + q(r)>u = 0, 

with the (complex) eigenvalue k, . 
The interaction q(r) [in general complex and also including the centrifugal 

potential 1(1+ l)/r2] is assumed for the moment to go to zero faster than l/r at 
infinity. The regular and irregular solutions U;“(r) and Q”)(r) for arbitrary k then 
behave as decreasing and increasing exponentials for large r: 

U;)(r) + e-k7; Ui2)(r) -+ e+kr. (2) 

The bound-state solution behaves like r l+l at the origin and goes exponentially 
to zero at infinity for k = k. . Our method of solution is as follows: impose the 
Correct behavior, &(r) = Art+‘, at the origin with an arbitrary constant A for a 
trial value of k. Integrate outwards to large r by standard procedures. The wave 
function is then 

uk(r) = B(k) [UAV) + (y) C(k) t/f)(r)] 

-+ i?(k) [eckr + (9) C(k) e+kT] . 9.322 

The function C(k) vanishes for all the remaining eigenvalues, but like B(k), it is 
nearly constant in region of the order of the eigenvalue spacing around k, . We will 
therefore treat both as constants here. For large values of r the irregular component 
of t.&(r) rapidly becomes exponentially dominant when k is not an eigenvalue. It is 
therefore extremely tempting to seek a procedure which systematically makes 
t&(r) small for large r. Equivalently, and more suitably in the case of a complex k, 
one searches for a minimum in 1 uk(r)12 for a fixed and large r = r,, , 

- 1 @drd2 e 1 B 1 2 \e-2ReWr,) + 0 (k k) 

i ko 

(4) 

While such a procedure is possible in principle, and has an intrinsic relative 
precision in eigenvalue of 0(e-2Re(noro) ), the minimization procedure is extremely 
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inefficient, with a very small region of convergence. The reason is that the irregular 
function depends exponentially on Re(kr,). Therefore the zero which results from 
j k - k. I2 occurs as an extremely narrow, deep minimum superimposed on an 
exponential variation (see Fig. 1). 

tuk(ro)l 
2 

arbitrary units 

I I 
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FIG. 1. The absolute square of the wavefunction, 1 uk(rO)l*, has a narrow minimum for correct 
eigenvalue superposed on a rapid exponential variation for large rO . 

To remedy this situation we simply divide out the irregular solution by forming 
the ratio u(k): 

We have here neglected terms which may affect the eigenvalue to U(e-2Poro). The 
resulting function v(k) is now approximately a quadratic function of Re(k - k,) 
and Im(k - k,). The minimum is clearly defined, with a large region of convergence 
as illustrated in Fig. 2. An iteration procedure based on the minimization of v(k) 
converges quadratically to the intrinsic precision of the method. Excellent wave 
functions are obtained as follows: the function 1 u,(r)12 has a minimum at r = rmtn 
after which it grows exponentially for large r. The wave function uk(r) is very 
accurate for the approximate eigenvalue k for r < rmin and should be put equal 
to zero or exponentially decreasing for r > rmin . 
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FIG. 2. Division of 1 u&o)14 by the exponential factor gives a broad minimum with rapid 
convergence of iteration procedures. 

As practical test of the usefulness and accuracy of our method (method I), 
we first compare its results for the Klein-Gordon equation with those of a 
variational method with integration from both ends inwards (method II) [l] as 
well as with the exact solution in the case of the purely real Coulomb potential 
(point nucleus). We used a smeared charge distribution to avoid the technical but 
unessential problem of the r-l dependence of the potential at the origin. The 
Coulomb binding energy of the 3d orbit in ISO is exactly 

E o,3d = -26.1857, keV 

The finite size effect does not affect the eigenvalue for this orbit to this precision. 
The numerical methods give 

E(O) = 36 -26.1857 2 keV (method I), 

E$ = -26.1857, keV (method II). 

Thus the method works excellently for a real interaction. 
As the next step the pion energy and width in the 1s Bohr level of IsO are cal- 

culated in the presence of a complex strong interaction potential [2]. Of course the 
variational method had to be generalized to include complex interactions and 
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complex eigenvalues, but this is rather straightforward. We required iteration to 
stop when the relative difference of iterated eigenvalues was less than 1O-s. 

In the case of method I, the wavefunction u,(r) and the ratio v(k) were obtained 
from outwards integration from the origin using Numerov’s formula [3] for step- 
by-step integration in the complex plane2. 

The iterated eigenvalue was then obtained from a complex parabola fitted to 
u(k) of Eq. (5) using three neighboring values of k. The fixed value of the radial 
parameter r,, was chosen so large that the correct wavefunction was less than 
1O-4 of its maximal value. Starting from the eigenvalue in the absence of strong 
interactions both methods needed four iterations to give the values 

El, = (-219.6493, - i1.1322,) keV from method I, 
El, = (-219.6493, - i1.1322,) keV from method II. 

The corresponding energy for a smeared charge but without the strong inter- 
action potential is 

EjtJ = -233.3905, keV. 

It is thus clear that both numerical methods give identical results. The wave- 
functions agree very closely. The real and imaginary parts of the wavefunctions 
agree to better than 1 : lo5 for pion densities larger than 4 . 1O-6 of the maximal 
density. For a density of 5 . lo--’ the agreement is still 1 : 103. In other words, 
the wave functions agree everywhere to better than 1 : lo5 of the maximal value. 
Since the methods differ so widely, this may be regarded as further proof of their 
accuracy. Also for other cases (2s, 2p, 3d levels) we got similar good results with an 
even smaller number of iterations. Due to the necessity of calculating wave- 
functions for three values of k for each iteration our method is, disregarding 
possible refinements, about three times slower than the method II. This is 
however compensated by its greater generality and simplicity, in particular since 
both methods converge rapidly. For example, our method makes it possible to 
apply closely similar programs to bound state and continuum problems, which 
is now being exploited. 

It should finally be remarked that our application has been to the Klein-Gordon 
equation, which in principle is nonlinear in the energy eigenvalue. In our case the 
nonlinearity is very slight and of little importance, but our method should work 
equally well when the nonlinearity is strong. 

a Note that contrary to usual recommendations the integration is done deliberately in the 
direction of the instability. In our case this is completely innocent since our method makes 
explicit use of the same exponential growth to obtain the eigenvalue from the admixture of 
the irregular solution, Although the effect of an error is cumulative in the wave function, its 
relative effect on the eigenvalue therefore stays constant so that it can be. made arbitrarily small. 
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